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UNBIASED COMPONENT-WISE RATIO ESTIMATIONl
By: D. S. Robson and Chitra Vithayasai, Cornell University

INTRODUCTION

The precision of a ratio-type estimator such

as yX/X can sometimes be substantially increased
if the correlated varisbles y and x can be ex-
pressed as sums of more highly correlated com-
ponents, y=y)1+eee+yx and x=xj+es++xk. An empiri-
cal example of this arises in the ratio estimation
of total dry matter yield of corn in field plot
experiments; when both the green weight x and
oven-dry weight y are measured and estimated
separately for ears and the vegetative parts of
the plant the efficiency of estimation of plot
total dry weight is increased by approximately
T70%. An example from general sample survey
methodology is the case of cluster sampling with
unequal size clusters when the elements in each
randomly selected cluster are stratified into k
strata; the usual mean per cluster ratio estimate
is then replaced by the sum of k such ratio
estimates for the individual strata.

In this paper we are concerned primarily
with the Hartley-Ross [1]type of unbiased com-
ponent-wise ratio estimator, for which we present
the exact variance formuls and an unbiased estima-
tor of the variance. The efficiency of component-
wise ratio estimation is then examined empirically
with the data from 39 corn plots of 10 hills each,
and the bias of the conventional ratio estimate
and its variance formuls are evaluated.

THE VARIANCE OF THE HARTLEY-ROSS TYPE OF COMPONENT-
WISE RATIO ESTIMATOR

The Hartley-Ross unbiased ratio estimator of
the population total for a single component y takes
the form
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where T is the mean ratio of y to x in a random
sample of size n from & population of size N, and
X is the population total for x. Goodman and
Hartley [2 gave the limiting form of the variance
of this estimator as
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vhere R 18 the population mean of the ratio
r=(y/x).

The exact variance for f N was given by
Robson [3] in terms of Tukey's [ 4] miltivariate

kays and may be most conveniently expressed in
the notation of Tukey's symbolic, dot-multiplica-
tion as
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All variances and covariances appearing in this
formula are understood to be defined in the
usual manner for finite populations; for example
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This definition, which arises naturally in the
algebraic treatment of moments and cumulants of
a finite population, also serves to illustrate
what is meant by dot-multiplication, since
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thus, the dot-product of two means is the mean of
all possible crossproducts. The same is true for
the dot-product of more than two means; for ex-
ample,
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and, similarly,
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As N gets large, of course, the dot-product of
two or more moments approaches the ordinary pro-
duct of the moments, provided the latter approach
a limit, and so the limiting var(Y') of Goodman
and Hartley is obtained.

A minimum variance unbiased estimator of
var(Y) is easily constructed using the fact that
prolykays, or dot-products of sample cumulants,
are minimum variance unbiased estimators of the
corresponding polykays of the finite population.
Thus, for exa.mple, the minimum variance unbiased
estimator of R ¥ is
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or, expressed in more convenient computational
form,
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The other components of var(Y!) are similarly
estimated; comput formulas for the estimates
are given by Robson | 5J and will follow as special
cases of the more general formulas given next for
the component-wise ratio estimator.

The general case we wish to consider is
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where now
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Since the individual terms var(Y]) take the form
indicated earlier for a single component estima-
tor, the only new algebraic problem is the compu~
tation of cov(Y:[,Yj) , and by the same methods used
earlier this may be shown to take the analogous
form
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Computing formulas for the minimum variance un-
biased estimators of the terms in this covariance
formula are shown in Table 1 for the case i=l,
J=2; sample means are expressed in the manner
indicated earlier as, for example,
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In addition, the abbreviation (n)y is used for
n(n=1)++s(n-m+l). Computing formulas for estimat-
ing the components of var(Yj) may be obtained from
putting (r,x,,¥;)=(ry,%y,¥,)=(ry 5% ,5,).

AN EMPIRICAL EVALUATION OF COMPONENT-WISE RATIO
ESTIMATION OF CORN PIOT TOTAL DRY WEIGHT

Crop yield in agronomic experiments with
silage corn is ordinarily measured in terms of
total dry matter production per plot. Dry weight
can be measured accurately only by drying the
harvested plant material in ovens and there are,
of course, distinct limitations on the amount of
material which can be handled in this manner.
Green, or fresh weight of the production from a
plot, however, can be measured directly in the
field as the material is harvested, and since
green and dry weight are highly correlated the
total dry weight for the plot can be accurately
estimated by determining the dry matter per-
centage in a sample from the plot and applying
this csample dry matter per cent to the measured
total green weight. For the purpose of measuring
the sampling error in this method of estimation,
green and dry weight determinations were made on
390 individual hills of corn in an experiment
containing an early, medium, and a late maturing
variety arranged in plots of 10 hills* These
weight determinations were made separately for
the ears and stovers of each hill (stovers
=husks+stalks+leaves), thus providing an oppor-
tunity also to examine the efficiency of a
component-wise estimator of plot total dry weight.
The separate and combined components of hill green
and dry weights are summarized graphically in
Figure 1, showing that a somewhat higher green
weight-dry weight correlation exists for the
separate components, ears and stovers, than for
the total, ears + stovers. Average within-plot
correlations between green and dry weight of
ears, stovers, and ears + stovers were .953,
.932, and .84, respectively.

For each plot the efficiency of the unblased
component-wise ratio estimator Y"""Yétover"'ye'ar
relative to the unbiased combined ratio estimator
Y tover+car Was computed for samples of n hills,
n=2,3,+¢¢,9., These efficiencies, in the form of
a variance ratio var(Yaie)/var (Y3+Y), were re-
latively constant for all n, and the average
efficiencies over all 39 plots as shown in Table 2.
The two components of the estimator, Ys'tover and
Yiar, were correlated in this experiment, but to
a much lesser degree than the green and dry
weights within each component (Table 3).

The variances var(Ypie), var(Ys+Ys), var(Ys),
var(Ys) and cov(Ys,Yd) employed in the above
evaluation were computed directly from the
formulas given earlier. In addition to this
evaluation, however, the data provided an oppor-
tunity to compare the sampling error of the un-
biased ratio sstimator with the error mean square
of the morg conventional, but blased, ratio
estimator ¥=yX/X. This was accomplished by
enumerating all possible samples of size n for
each plot of N=10 hills, computing the conven-
tional ratio estimate for each such sample, and
then averaging the squared error, (estimate-
¥nown plot dry weight)2, over all (¥) samples.
Averaged over all 39 plots, the,error Aleaen squares
(EMS) for the three estimators Ygie, Ys, Ye
compared to the variances of the corresponding
unbiased ratio estimators as shown in Table 4.



The bias of the conventional estimator is negligi-
ble in this case, even for small samples, and its
sampling error is the same as that of the unbiased
ratio estimator. In practice, of course, the con-
ventional estimator offers the advantage that
individual hills in the sample need not be weighed
and dried separately but may be handled in bulk.

Finally, the, actual error mean square of the
biased estimator ¥=yX/X can be compared to variance
approximation
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This comparison is shown graphically in Figure 2.
A tendency for this approximation to underestimate
the true error mean square decreases as sample size
increases since the actual error mean square de=-
creases at a faster rate than the function N-n/n.

Table 1. Computing formuls for the estimation of ccv(Y]'_,Ya')
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Table 2. Average relative efficiency of the unbiased component-wise estimator

n=2 n=3 n=b n=5 n=6 n=T n=8 n=9

1.67 1.68 1.69 1.69 1.69 1.69 1.69 1.69

Table 3. Average correlation between the two components of the estimator

n= n=3 n=b =5 n=6 n=7 n=8 n=9

237 240 24 241 2h2 2k 24 24
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1)

2)

3)

Table k4.
n=2 n=3 n=b n=5

ms(®,,) 45,605 26,12 16,665  --
var(y;+e) 46,233 26,275 16,7dk 11,113
ms(T)) 9,612 5,362 3,382 ==
var (Y}) 9,466 5,517 3,37k 2,235
ms(T) W,222 8,10 5,169 --
ver(¥!) 14,458 8,197 5,217 3,461
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Comperison of error mean squares of biased and unbiased ratio estimators

n=6 n=7 n=8 n=9
7,352 4,718 2,748 1,220
7,389 4,7Th2 2,762 1,226
1,477 U5 549 2k3
1,484 952 554 246
2,286 1,468 856 380
2,300 1,476 860 382

1 Prepared in connection with research sponsored by the National Science Foundation
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