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INTRODUCTION 

The precision of a ratio -type estimator such 
as can sometimes be substantially increased 

the correlated variables y and x can be ex- 
pressed as of more highly correlated cow 
ponente, + +Yk ++xk. An empiri- 
cal example of this arises in the ratio estimation 

of total dry matter yield of corn in field plot 
experiments; when both the green weight x and 
oven -dry weight y are measured and estimated 
separately for ears and the vegetative parts of 
the plant the efficiency of estimation of plot 
total dry weight is increased by approximately 
70%. An example from general sample survey 
methodology is the case of cluster sampling with 
unequal size clusters when the elements in each 
randomly selected cluster are stratified into k 
strata; the usual mean per cluster ratio estimate 
is then replaced by the sum of k such ratio 
estimates for the individual strata. 

In this paper we are concerned primarily 
with the Hartley -Ross [1]type of unbiased com- 
ponent -wise ratio estimator, for which we present 
the exact variance formula and an unbiased estima- 
tor of the variance. The efficiency of component- 
wise ratio estimation is then examined empirically 
with the data from 39 corn plots of 10 hills each, 
and the bias of the conventional ratio estimate 
and its variance formula are evaluated. 

THE VARIANCE OF THE HARTLEY -ROSS TYPE OF COMPONENT- 
WISE RATIO ESTIMATOR 

The Hartley -Ross unbiased ratio estimator of 
the population total for a single component y takes 
the form 

1 
n -1 

where is the mean ratio of y to x iii a random 
sample of size n from a population of size N, and 
X is the ulation total for x. Goodman and 
Hartley [22]] gave the limiting form of the variance 
of this estimator as 

2 var(Y1)=[n 

where is the population mean of the ratio 
r= (y /x). 

The exact variance for finite N was given by 
Robson [3] in terms of Tukey's multivariate 
polykays and may be most conveniently expressed in 
the notation of Tukey's symbolic, dot- multiplica- 
tion as 

var(Yt)= 
N n 

+ ar,xar,x)] 
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All variances and covariances appearing in this 
formula are understood to be defined in the 
usual manner for finite populations; example 

1 N 
N 

This definition, which arises naturally in the 
algebraic treatment of moments and cumulants of 
a finite population, also serves to illustrate 
what is meant by dot - multiplication, since 

1 N 1 N 
ar,x N N N -1 

thus, the dot - product of two means is the mean of 
all possible crossproducts. The same is true for 
the dot - product of more than two means; for ex- 
ample, 

1 N 
N N-1 

1 N 
E rixjyk 

1#jk 

and, similarly, 

N 

N(N-1)(N) 
i 
r 

N 

N(N- 1)(N- 2)(N 

As N gets large, of course, the dot - product of 
two or more moments approaches the ordinary pro- 
duct of the moments, provided the latter approach 
a limit, and so the limiting var(Yt) of Goodman 
and Hartley is obtained. 

A minimum variance unbiased estimator of 
var(?) is easily constructed using the fact that 

or dot - products of sample cumulants, 
are minimum variance unbiased estimators of the 
corresponding polykays of the finite population. 
Thus, for example, the minimum variance unbiased 
estimator of Ra is 

x,y 
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r.s 

= 
1 1 

n(n-1)(n-2) 

or, expressed in more convenient computational 

form, 
n n n nn 

n(n-1)( 1 1 1 1 1 

n n n 

1 1 1 1 

The other components of var(Y') are similarly 
estimated; computingjgrmulas for the estimates 
are given by Robson and will follow as special 
cases of the more general formulas given next for 
the component -wise ratio estimator. 

The general case we wish to consider is 

k k 
Yi i+ 

n 
i =1 i =1 

where now 

var(Yt)= var(Y1)+2 cov(Y1,Y3) 
i=1 

Since the individual terms take the form 
indicated earlier for a single component estima- 
tor, the only new algebraic problem is the compu- 
tation of cov(Y1,Y3), and by the same methods used 
earlier this maybe shown to take the analogous 
form 

N(N -n) +R R a 
1 i 

1 Ñ riar3 
+ N 

Computing formulas for the minimum variance un- 
biased estimators of the terms in this covariance 
formula are shown in Table 1 for the case 1 =1, 
jam; sample are expressed in the manner 
indicated earlier as, for example, 

1 n 

and all products represent ordinary products, as 

In addition, the abbreviation used for 
n(n- 1)..(n -m+l). Computing formulas for estimat- 
ing the components of var(Yi) may be obtained from 
putting (r1,x1,Y1) =(r2,x ,Y2)= (ri.,x1,Y1) 

AN EMPIRICAL EVALUATION OF COMPONENT -WISE RATIO 
ESTIMATION OF CORN PIOT TOTAL DRY WEIGHT 

Crop yield in agronomic experiments with 
silage corn is ordinarily measured in terms of 
total dry matter production per plot. Dry weight 
can be measured accurately only by drying the 
harvested plant material in ovens and there are, 
of course, distinct limitations on the amount of 
material which can be handled in this manner. 

Green, or fresh weight of the production from a 
plot, however, can be measured directly in the 
field as the material is harvested, and since 
green and dry weight are highly correlated the 
total dry weight for the plot can be accurately 
estimated by determining the dry matter per- 
centage in a sample from the plot and applying 
this sample dry matter per cent to the measured 
total green weight. For the purpose of measuring 
the sampling error in this method of estimation, 
green and dry weight determinations were made on 
390 individual hills of corn in an experiment 
containing an early, medium, and a late maturing 
variety arranged in plots of 10 hills:* These 
weight determinations were made separately for 
the ears and stovers of each hill (stovers 
= husks+stalks +leaves), thus providing an oppor- 
tunity also to examine the efficiency of a 
component-wise estimator of plot total dry weight. 
The separate and combined components of hill green 
and dry weights are summarized graphically in 
Figure 1, showing that a somewhat higher green 
weight -dry weight correlation exists for the 
separate components, ears and stovers, than for 
the total, ears + stovers. Average within -plot 
correlations between green and dry weight of 
ears, stovers, and ears + stovers were .953, 
.932, and .824, respectively. 

For each plot the efficiency of the unbiased 
component -wise ratio estimator Y'= YBtover 
relative to the unbiased combined ratio estimator 

Yátover+ear computed for samples of n hills, 
nß,3,.,9. These efficiencies in the form of 
a variance ratio /var(Ys +YY), were re- 
latively constant for all n, and the average 
efficiencies over all 39 plots as shown in Table 2. 
The two components of the estimator, Ystover and 

were correlated in this experiment, but to 
a much lesser degree than the green and dry 
weights within each component (Table 3). 

The variances var(Y8), var(YS +Yé), var(Yá), 
var(Y) and cov(YB,YY) employed in the above 
evaluation were computed directly from the 
formulas given earlier. In addition to this 
evaluation, however, the data provided an oppor- 
tunity to compare the sampling error of the un- 
biased ratio estimator with the error mean square 
of the mort conventional, but biased, ratio 
estimator =4X /x. This was accomplished by 
enumerating all possible samples of size n for 
each plot of N =10 hills, computing the conven- 
tional ratio estimate for each such sample, and 
then averaging the squared error, (estimate - 
known plot dry weight)2, over all (4) samples. 
Averaged over all 39 plots, the squares 
(EMS) for the three estimators Ys, Ye 
compared to the variances of the corresponding 
unbiased ratio estimators as shown in Table 4. 



The bias of the conventional estimator is negligi- 
ble in this case, even for small samples, and its 
sampling error is the same as that of the unbiased 
ratio estimator. In practice, of course, the con- 
ventional estimator offers the advantage that 
individual hills in the sample need not be weighed 
and dried separately but may be handled in bulk. 

Finally, theactual error mean square of the 
biased estimator Y =ÿX /x can be compared to variance 
approximation 

157 

2x y] 
n 

X2 

This comparison is shown graphically in Figure 2. 
A tendency for this approximation to underestimate 
the true error mean square decreases as sample size 
increases since the actual error mean square de- 
creases at a faster rate than the function N -n /n. 

Table 1. Computing formula for the estimation of cov(Y1,Y) 

/(n)2 
1 2 

rlr2sxl 

+r n 12 2 2 22 1 2 /( ) 
n2( /(n)3 

/(n)3 

s = rl,r2 

r1r2x1x2 /(n)4 

srl,x2sxl,r2= n2[(n2 
-3n +(n- 1y2 

42ÿ1r2) +ÿ1ÿ2 n3[(n x1 ;2 +;17'2x1;2) 

1] /(n)4 

Table 2. Average relative efficiency of the unbiased component -wise estimator 

n=3 n=5 n=7 n=9 

1.67 1.68 1.69 1.69 1.69 1.69 1.69 1.69 

Table 3. Average correlation between the two components of the estimator 

n n=3 n=4 n=5 n=6 n=7 n=9 

.237 .240 .241 .241 .242 .242 .242 .241 
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Table 4. Comparison of error mean squares of biased and unbiased ratio estimators 

n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 

45,603 26,102 16,665 7,352 4,718 2,748 1,220 

var(Y24e) 46,233 26,275 16,744 11,113 7,389 4,742 2,762 1,226 

9,612 5,362 3,382 -- 1,477 945 549 243 

var(Y4) 9,466 5,317 3,374 2,235 1,484 952 554 246 

14,222 8,102 5,169 -- 2,286 1,468 856 380 

var(Ye) 14,458 8,197 5,217 3,461 2,300 1,476 860 382 
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